Edit concept Question Editor Create issue ticket

Neuronal Ceroid Lipofuscinosis


Neuronal ceroid lipofuscinosis (NCL) refers to a group of disorders that are related to the accumulation of lysosomal storage material and lead to deficits in motor and cognitive functions, seizures, psychiatric disturbances, and vision loss. Most types of NCL manifest in childhood, and the diagnosis of NCL is based on the analyses of biopsy samples and the identification of the underlying mutation. There is no cure; affected individuals receive symptomatic care and have a reduced life expectancy.


Most types of NCL manifest in infancy or early childhood and are characterized by developmental regression recognizable in the progressive loss of motor and cognitive skills, the onset of seizures and behavioral problems, as well as retinal degeneration resulting in visual impairment progressing to blindness. These symptoms are triggered by profound neuronal degeneration, cortical thinning, and overall brain atrophy, and they may be accompanied by progressive microcephaly [1] [2] [3].

Following normal development during the first few months of life, children suffering from classical infantile NCL begin to lose previously acquired skills and are eventually diagnosed with progressive cognitive and motor decline. By contrast, epilepsy is the leading symptom in most patients with NCL type 2 [4]. While vision loss is the presenting symptom in about 80% of patients with NCL type 3 [3], it is not usually observed in adult-onset NCL. The latter typically manifests as early dementia, Parkinson-like movement disorders, and myoclonic epilepsy. Patients suffering from congenital NCL may present with microcephaly at birth [5]. In general, the sequence of onset of symptoms may vary from patient to patient [3].

  • Clinical phenotypes have been characterized traditionally according to the age of onset and order of appearance of clinical features into infantile, late-infantile, juvenile, adult, and Northern epilepsy (also known as progressive epilepsy with mental[ncbi.nlm.nih.gov]
  • This definition applies to blindness of the individual only. 345 Epilepsy and recurrent seizures The following fifth-digit subclassification is for use with categories 345.0, .1, .4-.9: 0 without mention of intractable epilepsy 1 with intractable epilepsy[genedx.com]
  • Northern epilepsy is an autosomal recessive childhood onset epilepsy syndrome, clinically characterized by generalized tonic-clonic seizures with onset at 5 to 10 years of age and subsequent slowly progressive mental deterioration.[ncbi.nlm.nih.gov]
Gaucher Disease
  • disease and Niemann-Pick type C disease; see these terms).[orpha.net]
  • Gaucher disease Gaucher disease (McKusick ) is the most frequently encountered recessively inherited lysosomal storage disorder [3,4].[healthdocbox.com]
  • Therapeutic goals and management guidelines are available for Gaucher disease type I ( 44, 45, 54, 55 ). There is currently no treatment available for Gaucher disease type II. ERT is not recommended ( 43, 45 ).[ncbi.nlm.nih.gov]
  • Genome-wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation. Am J Hematol. 2012; 87 :377–383. [ PMC free article ] [ PubMed ] 25.[ncbi.nlm.nih.gov]
  • Zhang CK, Stein PB, Liu J et al. (2012) Genome‐wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation.[els.net]
Restless Legs Syndrome
  • Restless leg syndrome symptoms were reported in 35.2%. CONCLUSION: Children with neuronal ceroid lipofuscinosis have a high burden of sleep disturbances.[ncbi.nlm.nih.gov]
Visual Impairment
  • Visual impairment typically appears at age four to six years and rapidly progresses to light /dark awareness only. Life expectancy ranges from age six years to early teenage. CLN3 disease, classic juvenile.[ncbi.nlm.nih.gov]
  • She had never experienced visual impairment or shown electroretinographic abnormalities.[ncbi.nlm.nih.gov]
Progressive Loss of Vision
  • Most childhood forms of NCL are clinically characterized by progressive loss of vision as well as mental and motor deterioration, epileptic seizures, and premature death, while the rare adult forms are dominated by dementia.[ncbi.nlm.nih.gov]
  • The juvenile form of neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene, and is characterized by progressive loss of vision and development of motor deficits.[ncbi.nlm.nih.gov]
  • loss of vision, myoclonic seizures, loss of cognitive function, pyramidal and extrapyramidal motor dysfunction, and early demise [ 1 ]. 2 Biological/functional classification NCLs were initially classified by the age of onset and the ultrastructural[content.iospress.com]
  • loss of vision and psychomotor deterioration supplemented with neuropathological investigations, which showed intraneuronal accumulation of granular material with lipid-like staining qualities. 6 It was not until the late 1960s that Zeman and Dyken 7[dovepress.com]
Psychiatric Symptoms
  • Patients presented at onset (31 and 38 years), with psychiatric symptoms only. At present (ages 56 and 54 years), visual, verbal, and cognitive losses have progressed and both patients have cerebellar ataxia and cannot walk without support.[ncbi.nlm.nih.gov]
  • The first patient with adult neuronal ceroid lipofuscinosis (ANCL) due to a deficiency of PPT is presented; her present age is 53 years and the onset of the disease was at 38 years with psychiatric symptoms.[ncbi.nlm.nih.gov]
  • symptoms early in the course of the disease.[doi.org]
  • Please note, if the patient’s primary presentation symptom is epilepsy but other NCL symptoms such as visual decline, behavioral/psychiatric symptoms, motor disturbances, or others are not present, consider choosing the Invitae epilepsy panel instead,[invitae.com]
  • The psychiatric symptoms include anxiety, aggressive behavior, depression, hallucinations and psychotic symptoms. Female patients with JNCL have more difficult psychiatric problems than their male counterparts 12 .[scielo.br]
  • Valproate (49%, n 36) and levetiracetam (41%, n 30) were the most commonly used seizure medications. Myoclonic seizures occurred infrequently (16%, n 14). Seizure severity did not vary by sex or genotype.[ncbi.nlm.nih.gov]
  • The onset of illness was marked by seizures occurring as generalized tonic-clonic seizures and myoclonic jerks. There was gradual regression of cognitive milestones with increasing forgetfulness and impaired quality and content of speech.[ncbi.nlm.nih.gov]
  • Piracetam is effective for both seizures and ataxia.[ncbi.nlm.nih.gov]
  • Epilepsy with generalized tonic-clonic seizures and/or complex-partial seizures typically appears around age ten years. Life expectancy ranges from the late teens to the 30s.[ncbi.nlm.nih.gov]
  • Needs to be fed Seizures began again – had five seizures. 7/09 – 21 year old 9 months - Daily seizures occur. Uses wheelchair. 1/10 - 22 years 3 months old Uses wheelchair - ambulates short distances only. Limited 1-2 word speech.[omicsonline.org]
  • Piracetam is effective for both seizures and ataxia.[ncbi.nlm.nih.gov]
  • We suggest CLN genes should be considered in the molecular analyses of patients presenting with adult-onset autosomal recessive cerebellar ataxia. [Indexed for MEDLINE] Free full text[ncbi.nlm.nih.gov]
  • These individuals tend to have milder features overall compared to those diagnosed earlier, but with more severe ataxia.[ncbi.nlm.nih.gov]
  • Keywords: Ataxia, epilepsy, neuronal ceroid lipofucinosis, skin biopsy, vision loss How to cite this article: Verma R, Raut TP, Tiwari N, Malhotra KP, Hussain N, Malhotra HS.[annalsofian.org]
  • A female, 5-year-old American Staffordshire Terrier with severe progressive neurological deficits, particularly in terms of ataxia and keeping balance, was examined pathomorphologically and a genetic analysis was performed.[ncbi.nlm.nih.gov]
Myoclonic Jerking
  • jerk and visual impairment.[ncbi.nlm.nih.gov]
  • During the next year, she gradually developed ataxia, myoclonic jerks, and bilateral optic nerve atrophy and lost motor skills.[ncbi.nlm.nih.gov]
  • Myoclonic jerks constituted the most prominent paroxysmal phenomenon. An electroencephalogram revealed the "vanishing" pattern described in infantile ceroid lipofuscinosis.[ncbi.nlm.nih.gov]
  • The onset of illness was marked by seizures occurring as generalized tonic-clonic seizures and myoclonic jerks. There was gradual regression of cognitive milestones with increasing forgetfulness and impaired quality and content of speech.[ncbi.nlm.nih.gov]
  • He presented with progressive dementia, loss of visual acuity, gradual regression of speech and motor functions, and myoclonic jerks. A hyperactive deep tendon reflex was noted, but there was neither muscle weakness nor hepatomegaly.[ncbi.nlm.nih.gov]
Cerebellar Ataxia
  • We suggest CLN genes should be considered in the molecular analyses of patients presenting with adult-onset autosomal recessive cerebellar ataxia. [Indexed for MEDLINE] Free full text[ncbi.nlm.nih.gov]
  • At present (ages 56 and 54 years), visual, verbal, and cognitive losses have progressed and both patients have cerebellar ataxia and cannot walk without support.[ncbi.nlm.nih.gov]
  • Both patients showed psychomotor developmental delay, cerebellar ataxia, convulsions, visual disturbance and myoclonus, and they became bedridden around the age of 6-7 years.[ncbi.nlm.nih.gov]
  • He had neuronal ceroid lipofuscinosis (Batten Disease) having developed progressive cerebellar ataxia from 8 years of age and retinitis pigmentosa.[academic.oup.com]
  • ataxia, bulbar symptoms, and extrapyramidal and pyramidal signs, but without retinal lesions and rapidly progressive dementia.[icd10data.com]
Extrapyramidal Symptoms
  • Soon after diagnosis, patients begin to have slight ataxic symptoms, and at adolescence extrapyramidal symptoms (rigidity, bradykinesia, slow steps with flexion in hips and knees) occur with increasing frequency.[dovepress.com]
  • However, soon after, they begin to have slight ataxic symptoms, and at adolescence extrapyramidal symptoms (rigidity, bradykinesia, slow steps with flexion in hips and knees, and shuffling gait) occur with increasing frequency.[dovepress.com]
  • Extrapyramidal symptoms and medication use in Mucopolysaccharidosis type III. J Intellect Dev Disabil 2009; 34 :275-9. 10.1080/13668250903070891 [ PubMed ] [ CrossRef ] [ Google Scholar ] 14. Fraser J, Wraith JE, Delatycki MB.[ncbi.nlm.nih.gov]


The presence of two or more of the main symptoms (motor deterioration, dementia, epilepsy, and vision loss) should raise suspicion as to NCL. Except from NCL type 10, these symptoms are developed by initially healthy patients of different ages.

Initial laboratory studies comprise enzymatic tests (when NCL types 1, 2, or 10 are considered), the analyses of blood smears in search of vacuolated lymphocytes (to be expected in patients with NCL types 3 or 12), as well as light and electron microscopic investigations of intracellular storage [6]. NCL is related to the accumulation of autofluorescent material in lysosomes in and outside of the central nervous system, and thus, biopsy samples are most commonly obtained from the skin [7]. The respective lipopigments are recognizable by light microscopy, while further hints on the underlying type of the disease can be gathered by means of electron microscopy. Here, distinctive ultrastructural patterns may be identified: NCL type 1, for instance, is characterized by granular osmiophilic deposits, as are NCL types 4, 6, 8, 10, and 14. By contrast, curvilinear patterns are observed in classical late-infantile NCL and NCL types 3, 5, 6, and 8. Besides the curvilinear ultrastructure, NCL type 3 may also be associated with rectilinear or fingerprint profiles. Rectilinear and fingerprint patterns may similarly be noticed in samples from patients with NCL types 5 and 7, whereas fingerprints may also be related to NCL types 6, 11, 12, 13, and 14. TDP-43 inclusions have been reported for NCL type 11, while brain iron accumulation is typical of NCL type 12 [5].

As can be inferred from the previous descriptions, the combination of certain ultrastructural patterns may further support the tentative diagnosis of a determined type of NCL. This tentative diagnosis should be confirmed with molecular biological analyses aiming at identifying the underlying mutation. This will at the same time lay the foundation for a thorough familial workup.

Pericardial Effusion
  • Transthoracic echocardiogram showed biventricular dilatation with severe impairment (ejection fraction 20%), right atrial dilatation, and a small global pericardial effusion ( Panel B ).[academic.oup.com]
  • At that time, brain computed tomography finding was normal, but electroencephalogram showed hypsarrhythmia. At the age of five, tremor, generalized ataxia, and motor and mental regression appeared.[ncbi.nlm.nih.gov]
  • […] disorder Intellectual deficit - craniofacial dysmorphism - cryptorchidism Intellectual deficit - enteropathy - deafness - peripheral neuropathy - ichthyosis - keratodermia Intellectual deficit - hypotonia - facial dysmorphism Intellectual deficit - hypsarrhythmia[csbg.cnb.csic.es]
Epileptiform Activity
  • In whole-night polysomnography, there was significantly more epileptiform activity than in other JNCL patients under 10 years of age.[ncbi.nlm.nih.gov]
White Matter Lesions
  • Periventricular white matter lesions may be evident on MRI scans of patients with classical and LINCL-variant disease.[ncbi.nlm.nih.gov]
Cytoplasmic Inclusion Bodies
  • The diagnosis was confirmed by the electron-dense cytoplasmic inclusion bodies within the conjunctival squamous epithelial cells. No specific treatment was available.[ncbi.nlm.nih.gov]


To date, treatment options are limited to symptomatic and palliative care [6], but new approaches to the management of NCL are intensively studied by researchers all over the world. In this context, they follow distinct strategies in agreement with the function of the deficient protein [7]:

  • NCL types 1 and 2 are caused by the deficiency of lysosomal enzymes and may be amenable to exogenous sources of functional proteins. Furthermore, gene therapy and stem-cell therapy have been discussed as treatment options for these enzymatic variants of NCL [1] [2].
  • Similarly, other types of NCL related to the deficiency of a secretable protein may possibly be managed with gene therapy and stem-cell therapy. Besides NCL types 1 and 2, this applies to NCL types 5, 10, 11, and 13. The underlying phenomenon is cross-correction, which is not to be expected in cases of mutations affecting transmembrane proteins.
  • Gliosis has been shown to precede NCL-related neurodegeneration, which indicates a role of neuroinflammation in the pathogenesis of the disease. Accordingly, anti-inflammatory agents have been considered as potential aids in the retardation of disease progression. Mycophenolate mofetil, for instance, has been studied in a short-term clinical trial including patients with NCL type 3 [8]. Long-term results have yet to be provided.

Employing experimental therapies, remarkable improvements in neurological function and life expectancy have been achieved in animal models. While this gives hope to many patients who wish for improvements in their quality of life, the fact that cure has not been reached for any type NCL does point out the necessity to further intensify research efforts [7].


It should be considered that the age at symptom onset as well as the presentation and progression of NCL may vary even when occurring within the same family. Nevertheless, all cases of NCL are associated with significant morbidity. There is no cure for this disease, which is associated with a limited expectancy of life. Patients diagnosed with classical infantile NCL don't usually survive beyond the age of 6, while those suffering from classical late-infantile NCL may reach the early teenage years. Patients with NCL type 3, the classical juvenile variant, often succumb to the disease during the third or fourth decade of life [3]. As a rule of thumb, the later the onset of symptoms, the higher the life expectancy. In line with this rule, congenital NCL is related to the shortest lifespan, with affected individuals often dying within their first year of life, and adult-onset disease may allow for long-term survival [5].


To date, NCL has been related to several hundred mutations in more than a dozen genes [4]. Most types of NCL are inherited in an autosomal recessive manner, with autosomal dominant inheritance having been described for NCL types 4 and 11 [5].


NCL has been described in patients of all ages, both genders, and most ethnicities worldwide. The overall incidence has been estimated at 1-2.5 per 100,000 live births, with classical late-infantile NCL being the most common type of the disease [1] [5].

The original, phenotypic classification of NCL has been based on the age of onset, which was defined as follows:

  • Congenital or neonatal NCL is present at birth.
  • Infantile NCL manifests within the first two years of life.
  • Late infantile NCL becomes symptomatic in children aged 2-4 years.
  • Juvenile NCL manifests in preschoolers.
  • Adult NCL is associated with symptom onset beyond the age of 16.

The age at symptom onset remains an important aspect in the clinical evaluation and diagnosis of NCL, but more modern classification schemes are based on the underlying gene defects as well as the properties and functions of the affected proteins [6].

Sex distribution
Age distribution


Distinct types of NCL are caused by mutations in different genes. Although the function of the respective gene products remains incompletely understood, many of these proteins have been shown to participate in lysosomal catabolism and the recycling of proteins and lipids [4] [9]. NCL may be related to enzyme deficiencies, defects in transmembrane proteins, mutations in ATPase or potassium channel genes, or the dysfunction of proteins putatively implicated in synapse functions [6].

Genotype-phenotype correlations have been described, and the degree of protein dysfunction may indeed correspond to the severity of the disease. Such has initially been described for those types of NCL related to deficiencies of lysosomal enzymes, but it may also apply to other variants of the disease [4]. In this context, it has been speculated that the complete loss of function of the CLN6 gene and its product, a protein likely to be involved in the degradation of post-translationally modified proteins in lysosomes, provokes a more severe disease than the partial reduction of CLN6 protein activity [10]. On the other hand, gain-of-function mutations resulting in protein aggregation is assumed to be the cause of NCL type 4 [7]. In sum, a better understanding of the individual functions of NCL-related genes is urgently required to better target experimental treatment regimens.


Affected families may benefit from genetic counseling. Precise knowledge regarding the underlying mutation allows for the prenatal diagnosis of NCL, which may weigh on the parent's decision regarding the maintenance of pregnancy. Similarly, prenatal testing is feasible in the case of enzyme deficiencies.


NCL refers to a heterogeneous group of lysosomal storage disorders. According to the current classification scheme, there are 13 types of NCL. For reasons of clarity, they are briefly described in this section and related to the underlying mutation [5] [6]:

  • NCL type 1 in its classical infantile, late infantile, or juvenile phenotype due to mutations in the PPT1 gene
  • NCL type 2 as a variant of the late infantile NCL type 1 is also referred to as classical late-infantile NCL and is caused by mutations in the TPP1 gene
  • NCL type 3 or classical juvenile NCL is also referred to as Batten disease and has been linked to mutations in the CLN3 gene
  • NCL type 4 or Parry type NCL, which may manifest in adolescence or adulthood, is provoked by DNAJC5 mutations
  • NCL type 5 is another variant of the late infantile NCL type 1 and is related to mutations in the CLN5 gene
  • NCL type 6 may similarly manifest as late infantile NCL, but adult-onset disease has also been described and may be referred to as Kufs disease type A; both variants are due to mutations in the CLN6 gene
  • NCL type 7 corresponds to yet another variant of the late infantile NCL type 1 but is provoked by MFSD8 mutations
  • NCL type 8 may present as late infantile NCL or late-onset Northern epilepsy, both of which are associated with mutations in the CLN8 gene
  • NCL type 10 is also known as congenital NCL and is caused by CTSD mutations
  • NCL type 11 is not usually diagnosed before the third decade of life and may be related to mutations in the GRN gene
  • NCL type 12 is also referred to as Kufor-Rabek syndrome and constitutes a juvenile variant of NCL, which is caused by ATP13A2 mutations
  • NCL type 13 or Kufs disease type B is an adult-onset variant of NCL that is related to mutations in the CTSF gene
  • NCL type 14 as an infantile variant of NCL due to KCTD7 mutations

As described in the list, there are certain types of NCL that are referred to as classical variants of the disease according to the average age at symptom onset. These are NCL type 1 (classical infantile NCL), NCL type 2 (classical late-infantile NCL), and NCL type 3 (classical juvenile NCL). It is beyond the scope of this article to provide a detailed description of the individual types (and subtypes) of NCL, so it is focused on these classical forms of the disease.

Patient Information

Neuronal ceroid lipofuscinosis (NCL) is a general term referring to more than a dozen diseases caused by mutations of different genes. They do, however, share important clinical features. Most types of NCL manifest in infancy or early childhood and are associated with a progressive decline in motor function and cognitive skills, seizures, behavioral disorders, and vision loss. Very rarely, NCL is present at birth, or symptom onset is delayed until adulthood.

To date, there is no cure for this disease, which is invariably fatal. Patients are provided symptomatic and palliative care but eventually succumb to the consequences of neurodegeneration and brain atrophy. Their life expectancy depends on the age of symptom onset: the later the onset of symptoms, the higher the life expectancy. In any case, NCL is associated with significant morbidity.

In families known to harbor NCL-related mutations, the identification of the respective gene defects makes prenatal diagnosis feasible and gives parents the opportunity to decide with regards to the maintenance of pregnancy.



  1. Hawkins-Salsbury JA, Cooper JD, Sands MS. Pathogenesis and therapies for infantile neuronal ceroid lipofuscinosis (infantile CLN1 disease). Biochim Biophys Acta. 2013; 1832(11):1906-1909.
  2. Kohlschütter A, Schulz A. CLN2 Disease (Classic Late Infantile Neuronal Ceroid Lipofuscinosis). Pediatr Endocrinol Rev. 2016; 13 Suppl 1:682-688.
  3. Ostergaard JR. Juvenile neuronal ceroid lipofuscinosis (Batten disease): current insights. Degener Neurol Neuromuscul Dis. 2016; 6:73-83.
  4. Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat. 2012; 33(1):42-63.
  5. Cotman SL, Karaa A, Staropoli JF, Sims KB. Neuronal ceroid lipofuscinosis: impact of recent genetic advances and expansion of the clinicopathologic spectrum. Curr Neurol Neurosci Rep. 2013; 13(8):366.
  6. Schulz A, Kohlschütter A, Mink J, Simonati A, Williams R. NCL diseases - clinical perspectives. Biochim Biophys Acta. 2013; 1832(11):1801-1806.
  7. Donsante A, Boulis NM. Progress in gene and cell therapies for the neuronal ceroid lipofuscinoses. Expert Opin Biol Ther. 2018; 18(7):755-764.
  8. Drack AV, Mullins RF, Pfeifer WL, Augustine EF, Stasheff SF, Hong SD. Immunosuppressive Treatment for Retinal Degeneration in Juvenile Neuronal Ceroid Lipofuscinosis (Juvenile Batten Disease). Ophthalmic Genet. 2015; 36(4):359-364.
  9. Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta. 2013; 1832(11):1866-1881.
  10. Arsov T, Smith KR, Damiano J, et al. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet. 2011; 88(5):566-573.

Ask Question

5000 Characters left Format the text using: # Heading, **bold**, _italic_. HTML code is not allowed.
By publishing this question you agree to the TOS and Privacy policy.
• Use a precise title for your question.
• Ask a specific question and provide age, sex, symptoms, type and duration of treatment.
• Respect your own and other people's privacy, never post full names or contact information.
• Inappropriate questions will be deleted.
• In urgent cases contact a physician, visit a hospital or call an emergency service!
Last updated: 2019-07-11 20:13