Osteitis fibrosa cystica (OFC) is a disease of the bone resulting from overproduction of parathyroid hormone. An excess of parathyroid hormone causes increased bone osteoclastic activity, and consequently, breakdown of the bone.
Presentation
Sylavunus was the first to make a diagnosis of hyperparathyroidism in 1973, while Recklinghausen was the first to describe the bony changes seen in OFC [14].
The clinical manifestations of OFC include both the bone lesions and the features of hyperparathyroidism, the later causes nausea, urinary frequency, constipation, and fatigue. OFC causes bone pain and renders the bones susceptible to fractures. Common sites of fractures in OFC are the bones of the arms, leg, and spine. The skeletal changes in OFC are the most prominent of changes at the sites of increased bone activity: phalanges, skull bones, ends of long bones, and trabecular bones of the vertebrae.
Advanced OFC gives rise to brown tumors, which may appear as unifocal or multifocal lesions. Brown tumors are seen in advanced stages of hyperparathyroidism. Brown tumors appear to be more severe in young adults with a particularly high risk of recurrence. Brown tumors are seen in the base of the skull, paranasal sinuses, orbits, and spine. It affects the mandible more than the maxillae and it has also been observed to affect the nasal cavity, palate, and temporal bone [15]. Diagnosis of brown tumors involves clinical, laboratory, and radiological findings [16]. Histologically, brown tumors are characterized by the presence of extensive vascular fibroblastic stroma and numerous multinucleated giant cells which appear like osteoclasts [17].
Entire Body System
- Fatigue
Being a precursor to the disorder, hyperparathyroidism itself may cause kidney stones, nausea, constipation, fatigue and weakness. Blood tests show a high level of serum calcium and alkaline phosphatase, and low serum phosphorus. [bionity.com]
Signs and symptoms include weakness, fatigue, nausea, vomiting, constipation, depression, bone pain, osteoporosis, cystic bone lesions, and kidney stones Applies To Hyperplasia of parathyroid ICD-9-CM Volume 2 Index entries containing back-references [icd9data.com]
Discussion: Clinical symptoms associated with hyperparathyroidism are weakness, fatigue, renal stones, fractures and osteitis fibrosa cystica (OFC). [shmabstracts.com]
- Weight Loss
The symptoms of the disease are the consequences of both the general softening of the bones and the excess calcium in the blood, and include bone fractures, kidney stones, nausea, appetite loss, and weight loss. [humpath.com]
All rights reserved Palpitations, dry cough, weight loss, and night sweats A 36-year-old man presented to our hospital with a 2-week history of palpitations and a 3-month history of dry cough, weight loss, and night sweats. [thelancet.com]
The symptoms of the disease are the consequences of both the general softening of the bones and the excess calcium in the blood, and include bone fractures, kidney stones, nausea, appetite loss, and weight loss. U.S. [definitions.net]
CLINICAL FEATURES • Bone pain or tenderness • Bone fractures • Skeletal deformities - Bowing of the bones 13. • Hyper PTH - Kidney stones, nausea, constipation • Parathyroid carcinoma - weight loss appetite loss polyuria polydipsia palpable neck mass [slideshare.net]
- Falling
Despite the fall in parathyroid hormone levels from preoperative levels of 20 to 1--2 ng/ml after surgery (normal, up to 1.2 ng/ml), serum 1,25-(OH)2D concentrations remained markedly elevated (156 pg/ml) preoperatively; 124 pg/ml 17 weeks postoperative [ncbi.nlm.nih.gov]
After increasing calcitriol to 4 μg/day, a progressive fall of PTH and ALP occurred over the course of 8 months (130 pg/ml and 97 U/L, respectively), while serum calcium remained within normal limits without evidence for hypercalciuria. [endocrine-abstracts.org]
Five years ago, she had sustained fractures of the right shoulder, left elbow, and right femoral shaft after falling on the ground. She received internal fixation of those fractures, as illustrated in Supplementary 1. [bmcmusculoskeletdisord.biomedcentral.com]
The fall in serum calcium is primarily due to functional or relative hypoparathyroidism, leading to reductions in bone reabsorption and intestinal calcium absorption and, in patients without end-stage renal disease, increased calcium excretion. [usmleforum.com]
When the glomerular filtration rate falls below 25 to 30 ml per minute, hyperphosphatemia persists, hypocalcemia tends to persist, and the stimulus to PTH release is exaggerated. [typeset.io]
- Anorexia
Weakness, anorexia, weight loss, and urinary frequency were also noted. A fracture involving the right femur was sustained after minimal trauma. [doi.org]
Anorexia; nausea and vomiting; constipation; abdominal pain; peptic ulcer disease (hypercalcaemia can increase gastric acid secretion); acute pancreatitis. Polyuria, polydipsia, dehydration. Renal colic, haematuria, hypertension. [patient.info]
Anorexia. Polyuria. Polydipsia. Dehydration. Anorexia. Nausea and vomiting. Certain clinical features may help to distinguish parathyroid carcinoma from parathyroid adenoma. [web.archive.org]
[…] cancer, small-cell cancer, thymoma, neuroectodermal malignancy, squamous cell lung cancer, and papillary thyroid cancer Some patients with asymptomatic hyperparathyroidism, when carefully questioned, have nonspecific symptoms such as fatigue, weakness, anorexia [enotes.tripod.com]
- Amyloidosis
Dialysis-related amyloidosis is another bone lesion which occurs in patients on prolonged dialysis. It results from accumulation and deposition of beta-2 microglobulin. [symptoma.com]
Beta-2 microglobulin dialysis-related amyloidosis commonly occurs in patients on long-term dialysis (typically longer than 5 years). Carpal tunnel syndrome is usually the first manifestation. [gamma.wustl.edu]
Early development of periarticular calcifications and beta 2 microglobulin amyloidosis in spite of a relatively good prevention of secondary hyperparathyroidism. 53 62 Oprisiu R...Heinze V 11490527 1998 4 Symptomatic hypercalcemia in a diabetic patient [malacards.org]
Gastrointestinal
- Constipation
Snapshot A 56-year-old woman presents to her primary care physician with bone pain in her hips, constipation, and anxiety. [step1.medbullets.com]
Being a precursor to the disorder, hyperparathyroidism itself may cause kidney stones, nausea, constipation, fatigue and weakness. Blood tests show a high level of serum calcium and alkaline phosphatase, and low serum phosphorus. [bionity.com]
Signs and symptoms include weakness, fatigue, nausea, vomiting, constipation, depression, bone pain, osteoporosis, cystic bone lesions, and kidney stones Applies To Hyperplasia of parathyroid ICD-9-CM Volume 2 Index entries containing back-references [icd9data.com]
- Loss of Appetite
Generally, the clinical features which manifest are a reflection of hypercalcemia and loss of bone density. Hypercalcemia predisposes to kidney stones. Other symptoms include nausea, loss of appetite, and weight loss. [symptoma.com]
She also had a history of shortness of breath, palpitation, dizziness, tinnitus, and loss of appetite. Also gave a history of poor sunlight exposure. [dovepress.com]
nausea, loss of appetite, psychic moans, and abdominal groans. [ncbi.nlm.nih.gov]
Musculoskeletal
- Bone Pain
When bone pain associated with the cystic bone disease failed to resolve, the patient underwent total parathyroidectomy, following which the bone pain gradually resolved. [ncbi.nlm.nih.gov]
Snapshot A 56-year-old woman presents to her primary care physician with bone pain in her hips, constipation, and anxiety. [step1.medbullets.com]
At 2 month follow up visit, she had some improvement in bone pain and weakness. [dovepress.com]
Complications of osteitis fibrosa include any of the following: Bone fractures Deformities of bone Pain Problems due to hyperparathyroidism, such as kidney stones and kidney failure Call your health care provider if you have bone pain, tenderness, or [nlm.nih.gov]
- Bone Disorder
Introduction Clinical definition a metabolic bone disorder secondary to severe hyperparathyroidism Background parathyroid hormone (PTH) plays an important role in calcium homeostasis via increasing RANK ligand (RANKL) expression on osteoblasts to subsequently [step1.medbullets.com]
Fibrous dysplasia (FD), a benign bone disorder, is differentiated from generalized fibrocystic disease caused by hyperparathyroidism. [ejinme.com]
A bone disorder characterized by an increase in porosity, reduction in bone mass, increased bone fragility, and an increased risk of fractures. Primary vs. [studyblue.com]
These include the high bone turnover disorders; osteitis fibrosa cystica and mixed disease as well as the low bone turnover disorders; osteomalacia and adynamic bone disease. [gamma.wustl.edu]
Urogenital
- Kidney Failure
Chronic kidney failure may lead to secondary or tertiary hyperparathyroidism and thus to osteitis fibrosa cystica and brown tumors. [doi.org]
Complications of osteitis fibrosa include any of the following: Bone fractures Deformities of bone Pain Problems due to hyperparathyroidism, such as kidney stones and kidney failure Call your health care provider if you have bone pain, tenderness, or [nlm.nih.gov]
- Renal Insufficiency
Biochemical investigation revealed primary hyperparathyroidism with renal insufficiency. A parathyroid adenoma was demonstrated on a neck ultrasound and sestamibi scan and subsequently confirmed by histology. [ncbi.nlm.nih.gov]
insufficiency with creatinine of 1.25 mg/dl (reference 0.50–1.40 mg/dl). [academic.oup.com]
insufficiency with diminished filtration results in phosphate retention · Maintenance of Ca x P product lowers serum calcium directly, which in turn increases parathyroid hormone production (2°hyperparathyroidism) · Osteopenia o Combined effect of § [learningradiology.com]
Hypercalcemia is noted at a young age Calcium creatinine clearance ratio should be Chronic renal failure Patients with longstanding renal insufficiency can develop secondary hyperparathyroidism due to hyperphosphatemia and reduced calcium absorption due [enotes.tripod.com]
Chronic adrenal insufficiency Chronic liver disease Chronic obstructive pulmonary disease End stage renal disease Ischemic heart disease Board review style answer #2 D. End stage renal disease. [pathologyoutlines.com]
Workup
Baseline blood investigations for the diagnosis of OFC include serum calcium, PTH, and alkaline phosphatase levels. All of these indices may be high with low serum phosphorus.
Imaging studies play key roles in the diagnosis of OFC. Plain radiographs of bones are useful and may show thin bones, bowing, cysts, and fractures. The lesions are characterized by well-defined areas of radiolucency with cortical expansion accompanied with bone destruction [18]. Furthermore, the best diagnostic means of secondary hyperparathyroidism is to conduct parathyroid immunoassay and evaluation to confirm CRF [19].
Plain radiographs of the jaw bone also reveal certain dental changes noted in OFC including the characteristic "ground glass appearance" of the jaw bones caused by extensive demineralization of the medullary bones of the jaw and extensive loss of lamina dura surrounding the roots of the teeth.
X-Ray
- Nephrolithiasis
She also had history of nephrolithiasis and osteoporosis. An ultrasound of neck showed an isolated, large hypoechoic mass near left thyroid lower pole, suggestive of parathyroid lesion with a concordant Tc-99 m Sestamibi parathyroid scintigraphy. [academic.oup.com]
See: - Renal Osteodystrophy : - Remodeling of Bone - Discussion: - caused by excessive production of parathyroid hormone which leads to hypercalcemia, recurrent nephrolithiasis, pancreatitis, peptic ulcers, and mental changes; - incidence of approx [wheelessonline.com]
and 50 percent had both bone disease and nephrolithiasis. [enotes.tripod.com]
Nephrolithiasis was documented by a review of the medical records. Screening radiography for nephrolithiasis or nephrocalcinosis was not routinely performed. [doi.org]
Although this is of some aid in reducing serum calcium levels, the incidence of nephrolithiasis and nephrocalcinosis increases, which may eventually lead to reduced creatinine clearance and renal failure. [emedicine.medscape.com]
- Ground Glass Appearance
Plain radiographs reveal a characteristic "ground glass appearance". On nuclear imaging, brown tumors could be identified. These are advanced cysts which are lined by osteoclasts and blood pigments. [symptoma.com]
The skull may have a ground glass appearance or salt and pepper pattern. There are no specific radiographic findings for brown tumors. [ncbi.nlm.nih.gov]
- X-Ray Abnormal
such as: + Elevated alkaline phosphatase, + Hypophosphatemia, + Hypercalciuria Shortened QT interval on electrocardiogram X-ray abnormalities, including: + Brown tumors, + Resorption of distal phalanges, + Resorption of distal clavicles, + “Salt and [enotes.tripod.com]
Serum
- Calcium Increased
[…] resorption of calcium; - increases excretion of phosphate; - stimulates 1,25 (OH)2 vit D3 (calcitriol) production; - common occurrence of renal calculi (in untreated cases, calculi sometimes caused renal failure); - increase renal phosphate excretion [wheelessonline.com]
Because the calcium level had increased to 10 mg/dl, the dose of alfacalcidol was cut down to 0.5 μg/d, which resulted in a rapid increase of the PTH level to 203 pg/ml after 3 months of decreasing the dose. [doi.org]
- Parathyroid Hormone Increased
Causes Return to top There are four parathyroid glands in the neck. They produce parathyroid hormone, which helps control calcium levels in the body. Parathyroid hormone increases the break down of bone (bone metabolism). [web.archive.org]
hormone increases both the activity and numbers of osteoclasts and osteoblasts. [advancesinpd.com]
Treatment
Primary hyperparathyroidism is said to be more prevalent than once thought [20]. The high incidence is attributed to the excellent diagnostic tools for serum calcium analysis.
Treatment of OFC involves the treatment of the underlying hyperparathyroidism and long-term correction of the OFC. Primary hyperparathyroidism can be treated by surgical removal of the parathyroid adenoma, after which patients demonstrate sustained remission of the OFC. Recovery of bone density is more marked and faster in cancellous bones, such as bones of the lumbar spine, than in cortical bones such as the forearm bones.
Hydration and regular exercise may also contribute to recovery and remission of OFC [21]. If surgical treatment is not possible, medical care can be aimed at reducing serum calcium levels [22].
Prognosis
OFC is very common in severe cases of primary hyperparathyroidism. However, secondary hyperparathyroidism open link from CRF causes renal osteodystrophy. The complications of OFC include bone fractures, deformities, pain, and complications of hyperparathyoidism.
Etiology
There are two pairs of parathyroid glands in the neck. These glands mainly function by maintaining calcium homeostasis. The activity of the glands is mediated by the hormone they produce, parathyroid hormone.
Osteitis fibrosa cystica is caused by excess parathyroid production of PTH. This hormone stimulates osteoclastic resorption of bone, causing them to become fragile. However, some bones may develop areas of weakening with no calcium deposits at all. This phenomenon is termed osteitis fibrosa.
Before 1950, up to 50% of patients with hyperparathyroidism developed osteitis fibrosa. Currently, however, OFC is rare because of early identification and diagnosis of hyperparathyroidism.
Brown tumor, a bone lesion resulting from hyperparathyroidism (primary or secondary), is a complication of OFC [6]. From current investigations, brown tumor is regarded as a reparative lesion rather than a neoplasm. Brown tumors are pathognomonic of secondary hyperparathyroidism from chronic kidney disease [7]. Secondary hyperparathyroidism open link from chronic kidney disease results in renal osteodystrophy, which has five histopathological forms, osteitis fibrosa being the commonest form occurring in 50% of patients with end-stage renal disease. OFC is characterized by increased number and activity of osteoclasts with a tunnelling pattern of resorption of the trabeculae. Osteomalacia is another form of renal osteodystrophy occurring in 7% of patients with end-stage renal disease [8]. Osteomalacia also occurs as a result of impaired bone mineralization, mainly due to deposition of aluminium at the sites of mineralization.
Epidemiology
There have been notable changes in the epidemiology and pattern of clinical presentation of primary hyperparathyroidism since it was described in 1940 by Fuller Albright. It has been noted in the United Kingdom, United States, and many European countries that the incidence of primary hyperthyroidism has increased since it was described in 1940. It has also been observed among these countries that the pattern of presentation of the disease has altered significantly: In countries with multiple screening techniques, most of the patients with primary hyperparathyroidism are asymptomatic and skeletal and renal complications including OFC are not common. In the East, Middle East, and some countries in the southern hemisphere, the pattern of manifestation has remained unchanged.
A study, conducted to determine the effects of vitamin D and calcium on the occurrence of disease and etiogenesis of a parathyroid tumor in patients with primary hyperparathyroidism, revealed that strengthening of milk by mixing of vitamin D coincided with a reduction in prevalence of OFC and reduced progression of parathyroid tumor in the United States, between 1945 and 1960. In parts of the world where vitamin D deficiency is endemic, however, progression of OFC and development of parathyroid tumor was unaltered.
Generally, Asian Indians are noted to have larger parathyroid tumors than Americans, and black Americans had larger tumors than whites. However, using the serum 25-hydroxyvitamin D level (which is the best index for analyzing vitamin D intake) and parathyroid tumor weight (which best gives information about the growth of the parathyroid tumor), these indices showed no significant difference between whites, Asian Indians, and blacks.
This concludes that vitamin D and calcium nutrition affects both the pattern of disease and growth of the parathyroid tumors in patients with primary hyperparathyroidism. Therefore, it could help if better nutritional policies are executed in developing countries.
Pathophysiology
Osteitis fibrosa cystica represents the late changes in bone in patients with primary or secondary type of hyperparathyroidism. OFC is characterized by increased bone resorption due to stimulation of osteoclasts by excess parathyroid hormone. Because of the better diagnosis of hyperparathyroidism, OFC is rare.
Histologically, the bone changes in OFC are characterized by proliferation of osteoblasts and accumulation of fibroblasts over the trabecular surfaces and the bone marrow cavity. This cellular proliferation produces peritrabecular fibrosis which is a characteristic of OFC.
A common form of secondary hyperparathyroidism is renal osteodystrophy. Renal osteodystrophy occurs in chronic renal failure. CRF leads to impaired glomerular filtration and impaired renal vitamin D synthesis, which in turn, cause reduced calcium absorption. Ultimately, a reduction in serum calcium occurs as a sequel to increased serum phosphate levels. This results in stimulation of the parathyroid glands to produce excess PTH to counter the chronic hypocalcemia, leading to in effect an increased serum calcium level.
In renal osteodystrophy, there is bone remodelling which comprises of osteoblast and osteoclastic differentiation [9] [10]. This cycle of events begins with the osteoclastic differentiation resulting in an initial bone resorption. Following this stage of osteoclastic activity, there is increased deposition of calcium and activation of certain factors involved in bone matrix formation [11]. This inhibits the osteoclastic activity and causes the removal of the osteoclasts from the bone surface. Some of these factors include bone morphogenetic proteins [BMP], fibroblast growth factor, and heparin-bound growth factors. These factors are responsible for recruiting osteoblasts and osteoblast precursors into the lacunae formed by the osteoclastic activities [12] [13]. Bone formation results from these osteoblastic activities and consists of matrix formation, bone mineralization, replacement of woven bone with vascularized bone, and osteoblastic proliferation.
This bone remodelling cycle is characterized by an imbalance between the osteoclastic and osteoblastic activities such that more bone is removed than is formed. This causes significant reduction in bone density and strength.
Dialysis-related amyloidosis is another bone lesion which occurs in patients on prolonged dialysis. It results from accumulation and deposition of beta-2 microglobulin. However, the incidence of dialysis-related amyloidosis is reducing because of the current increased use of high-flux dialyzers which have high clearance of beta-2 microglobulin.
Prevention
In general practice, the presence of hyperparathyroidism is first suspected during routine blood tests for other conditions. A high serum calcium may be detected after such routine investigations. Since bone disease is the main cause of death and suffering in patients with hyperparathyroidism, it is recommended that patients with chronic kidney disease open link should have routine serum calcium, phosphate, and PTH tests and these values should be maintained within the normal ranges [23] [24] [25] [26]. Routine X-rays and echocardiography may identify vascular calcifications.
Summary
Osteitis fibrosa cystica is a condition which occurs in long-standing and advanced stages of hyperparathyroidism, either primary or secondary. Osteitis fibrosa cystica is characterized by increased bone turnover. Primary hyperthyroidism is the commonest cause of osteitis fibrosa, occurring in 80-85% of cases [1] [2]. Most cases of secondary hyperparathyroidism which result in osteitis fibrosa are due to chronic renal failure (CRF). Parathyroid adenomas constitute the commonest cause of primary hyper parathyroidism in osteitis fibrosa cystica.
The two pairs of parathyroid glands synthesize and secrete the parathyroid hormone (PTH) which is crucial for calcium and vitamin D homeostasis. PTH acts by increasing the renal tubular reabsorption of calcium, intestinal absorption of calcium, and renal synthesis of vitamin D. In excessive parathyroid activity, there is calcium build up in the blood which may trigger the bone remodelling and other changes featured in osteitis fibrosa cystica.
Osteitis fibrosa cystica presents with bone weakness, bone pain, and bone fractures. Generally, the clinical features which manifest are a reflection of hypercalcemia and loss of bone density. Hypercalcemia predisposes to kidney stones [3]. Other symptoms include nausea, loss of appetite, and weight loss.
Osteitis fibrosa cystica is rare compared to its incidence many decades ago, because of better and earlier diagnosis of hyperparathyroidism which is often made during routine blood calcium tests. It is commoner among women than men and it is generally most commonly seen in individuals between the ages of 50 and 60. In cases where it occurs in much younger patients, multiple endocrine neoplasia types I and II should be excluded [4].
Diagnosis of osteitis fibrosa cystica is made by laboratory blood investigations to assess the serum levels of calcium, parathyroid hormone, and alkaline phosphatase. Imaging studies, particularly plain radiographs, are necessary in the diagnosis of osteitis fibrosa cystica. Plain radiographs reveal a characteristic "ground glass appearance". On nuclear imaging, brown tumors could be identified [5]. These are advanced cysts which are lined by osteoclasts and blood pigments.
Treatment of osteitis fibrosa and hyperparathyroidism is by parathyroidectomy or conservative management which involves lowering serum calcium and monitoring serum calcium and PTH levels.
Patient Information
Osteitis Fibrosa Cystica (OFC) is a term which describes the bone changes which occur as a result of a condition called hyperparathyroidism. There are two pairs of parathyroid glands located behind the thyroid gland at the back of the neck. These glands produce a hormone called parathyroid hormone which helps to regulate the levels of calcium, vitamin D, and phosphorus in the body.
When these glands work excessively as a result of some intrinsic diseases such as tumors, it is referred to as primary hyperparathyroidism. However, if the overactivity of the parathyroid glands results from a disease of another organ, it is called secondary hyperparathyroidism.
Parathyroid hormone functions to increase the level of calcium in the blood when it falls. It serves three functions:
- Increasing calcium reabsorption from the kidneys
- Causing absorption of calcium from the intestine
- Increasing the production of vitamin D in the body. Vitamin D helps in the absorption of calcium by the intestinal cells.
Excess activity of the parathyroid glands is called hyperparathyroidism, which is responsible for osteitis fibrosa cystica. Excess parathyroid hormone causes increased breakdown of the bones and eventually making them weak and fragile.
Before 1950, almost half of the total number of patients with hyperparathyroidism had osteitis fibrosa cystica. Currently, the incidence has reduced mainly because hyperparathyroidism can be detected earlier before the bone complications arise.
- Hyperparathyroidism open link presents with several features including fatigue, constipation, and urinary frequency.
- Osteitis fibrosa cystica also presents with some common features, including bone pain, weakness, and may eventually predispose the bones to fracture and deformities.
- The bone changes in osteitis fibrosa cystica are commonly seen in the jaw, skull bones, spine, and bones of the fingers and toes.
The diagnosis of osteitis fibrosa cystica involves certain laboratory blood tests to check for the levels of calcium, phosphate, and the parathyroid hormone. X-rays are also necessary to reveal the characteristic bony changes associated with the disease. X-rays of the jaw are also necessary.
Treatment of osteitis fibrosa cystica can be achieved by surgical removal of the overactive parathyroid glands, a procedure called parathyroidectomy. In cases where surgery is not possible, drugs may be administered to reduce the level of calcium in the blood ****.
References
- Bilezikian JP. Primary Hyperparathyroidism, 2011, http://www.endotext.org/parathyroid/parathyroid5/parathyroidframe5.htm.
- Kearns AE. Thompson GB. Medical and surgical management of hyperparathyroidism. Mayo Clinic Proceedings. 2002;77 (1): 87–91.
- Murray JF, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Raven Press, New York, USA, 2nd edition; 1993.
- Marx SJ. Hyperparathyroid genes: sequences reveal answers and questions. Endocrine Practice. 2011;17 (supplement 3):18–27.
- Rubin MR, Livolsi VA, Bandeira F, Caldas G, Bilezikian JP. Clinical case seminar: Tc99m-sestamibi uptake in osteitis fibrosa cystica simulating metastatic bone disease. Journal of Clinical Endocrinology and Metabolism.2001; 86(11): 5138–5141.
- Soundarya N, Sharada P, Prakash N, Pradeep G. Bilateral maxillary brown tumors in a patient with primary hyperparathyroidism: Report of a rare entity and review of literature. J Oral Maxillofac Pathol. 2011;15:56–9.
- Fineman I, Johnson JP, Di-Patre PL, Sandhu H. Chronic renal failure causing brown tumors and myelopathy. Case report and review of pathophysiology and treatment. J Neurosurg. 1999;90:242–6.
- Hutchison A.J., R.W. Whitehouse, H.F., Boulton, et al. Correlation of bone histology with parathyroid hormone, vitamin D3, and radiology in end-stage renal disease. Kidney Int. 1993; 44:1071-1077
- Rodan GA. Bone homeostasis. Proc Natl Acad Sci USA. 1998; 95:13361–13362
- Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell.1997; 89:747–754.
- Miyauchi A, Hruska KA, Greenfield EM, et al. Osteoclast cytosolic calcium, regulated by voltage operated calcium channels and extracellular calcium, controls podosome assembly and bone resorption. J Cell Biol.1990; 111:2543–2552
- Yoneda T. Cytokines in bone: local translators in cellto-cell communications. In: Peck WA (ed) Cellular and molecular biology of bone. Academic Press, San Diego. 1993; 375–412.
- Auclair PL, Avendt DM, Hellstein JW. Giant cell lesions of the jaws. Oral Maxillofac Surg Clin North Am. 1997;9:655–80.
- Som PM, Lawson W, Cohen BA. Giant-cell lesions of the facial bones. Radiology. 1983;147:129–34.
- Kaugars GE, Niamtu J, 3rd, Svirsky JA. Cherubism: Diagnosis, treatment and comparison with central giant cell granulomas and giant cell tumors. Oral Surg Oral Med Oral Pathol. 1992;73:369–74.
- Langlias RP, Langland OE, Nortje CJ. Diagnostic imaging of the jaws. In: Cooke D, Zinner S, DiRienzi D, eds. Generalized Rarefactions. 1st ed. Baltimore: Williams and Wilkins; 1995: 63–4.
- Muntner P, Jones TM, Hyre AD, et al. Association of serum intact parathyroid hormone with lower estimated glomerular filtration rate. Clin J Am Soc Nephrol. 2009;4:186–194.
- Krause I, Eisenstein B, Davidovits M, Cleper R, Tobar A, Calderon S. Maxillomandibular brown tumor-a rare complication of chronic renal failure. Pediatr Nephrol. 2000;14:499–501.
- Prado FO, Rosales AC, Rodrigues CI, Coletta RD, Lopes MA. Brown tumor of the mandible associated with secondary hyperparathyroidism: A case report and review of the literature. Gen Dent. 2006; 54:341–3.
- Maina AM, Kraus H. Case Report Successful Treatment of Osteitis Fibrosa Cystica from Primary Hyperparathyroidism. Case Reports in Orthopedics. Volume 2012 (2012), Article ID 145760, 3 pages. http://dx.doi.org/10.1155/2012/145760. Accessed, October 23, 2015.
- Rubin MR, Livolsi VA, Bandeira F, Caldas G, Bilezikian JP. Clinical case seminar: Tc99m-sestamibi uptake in osteitis fibrosa cystica simulating metastatic bone disease. Journal of Clinical Endocrinology and Metabolism. 2001; 86 (11): 5138–5141.
- Agarwal G, Mishra SK, Kar DK, Singh AK, Arya V, Gupta SK, Mithal A. Recovery pattern of patients with osteitis fibrosa cystica in primary hyperparathyroidism after successful parathyroidectomy. Surgery. 2002; 132(6):1075-83.
- Muntner P, Jones TM, Hyre AD, et al. Association of serum intact parathyroid hormone with lower estimated glomerular filtration rate. Clin J Am Soc Nephrol. 2009;4:186–194.
- National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42:S1–S201.
- KDIGO CKD-MBDWork Group. KDIGO clinical practice guidelines for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. 2009;76: S1–S130.
- London GM, Guérin AP, Marchais SJ, et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003;18:1731–1740.